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Fast Voronoi Diagrams and Offsets
on Triangulated Surfaces

Ron Kimmel and James A. Sethian

Abstract. We apply the Fast Marching Method on triangulated domains
to efficiently compute Voronoi diagrams and offset curves on triangulated
manifolds. The computational complexity of the proposed algorithm is
optimal, O(M log M), where M is the number of vertices. The algorithm
also applies to weighted domains in which a different cost is assigned to
each surface point.

§1. Introduction

Voronoi diagrams play important roles in many research fields such as robotic
navigation and control, image processing, computer graphics, computational
geometry, pattern recognition, and computer vision. Its Euclidean version,
for which there is an efficient implementation, is a building block in many
applications.

The Voronoi diagram sets boundaries between a given set of source points,
and splits the domain into regions such that each region corresponds to the
closest neighborhood of a source point from the given set. Let our domain
be D, let the set of given n points be {pj E D,j E 0,..,n - 1}, and the
distance between two points p, q E D be d(p, q). Then the Voronoi region Gi
corresponds to the set of points p E D such that d(p, pi) < d(p, pj),Vj : i.

Offsets computation is often used in approximation and singularity theo-
ries, and comes into practice in computer aided design (CAD) and numerical
control (NC machines). Given a curve and its embedding space, an offset
curve is defined by a set of points with a given fixed distance from the original
curve.

There are some numerical and topological difficulties, even in the com-
putation of offsets for curves in the 2D Euclidean plane, e.g. the formation
of singularities in the curvature, self intersection of the offsetting curve, and
the fact that an offset of a polynomial parametrized curve is not necessarily
polynomial. Some of the numerical difficulties were addressed in [9], where
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the Osher-Sethian level set method [16,20], which grew out of Sethian's ear-
lier work on curve evolution, see [21], was used to overcome the topological
changes.

Efficient construction of distance maps, minimal geodesics, Voronoi dia-
grams, and offset curves for non-flat and weighted domains is a challenging
problem, see e.g. [15,13,8,12,6,10]. The core of our approach is Sethian's Fast
Marching Method, [22,19,20] which solves the Eikonal equation on a rectan-
gular orthogonal mesh in O(M log M) steps, where M is the total number of
grid points. Contingent upon the triangulated upwind and monotonic update
schemes given by Barth and Sethian [1], this technique was extended to trian-
gulated surfaces by Kimmel and Sethian in [11]. The triangulated version of
the Fast Marching Method has the same computational complexity, and solves
the Eikonal equation on triangulated domains in O(M log M) steps, where M
is the number of vertices. Using this technique, one can compute distances on
curved manifolds with local weights. For other applications which rely on the
Fast Marching Method, see [14,4].

Here we apply our method to compute Voronoi diagrams of a given set of
points (or regions), and to find offsets from curves and points on triangulated
manifolds. The computational complexity of the proposed algorithm is opti-
mal O(M log M), its implementation is simple, and it also applies to weighted
domains in which a different cost is assigned to each surface point.

The key idea is based on upwind finite difference operators as numerically
consistent approximation to the differential operators in the Eikonal equation.
Such an approximation selects the correct viscosity solution. The upwind
operators allow us to construct a solution to the Eikonal equation by optimally
sorting the updated points using a heap structure.

The outline of this paper is as follows. The key for fast computation of
offsets and Voronoi diagrams is a fast algorithm for computing the distance.
Hence, we first comment on the connection between the Eikonal equation and
distance maps on weighted domains. We refer the reader to Sethian's Fast
Marching Method for solving the Eikonal equation and for computing dis-
tance maps on orthogonal grids, and to [11] for details on our extension for
computing the solution on triangulated domains. We then apply the method
for the computation of fast Voronoi diagrams and offsets on triangulated man-
ifolds.

§2. Fast Marching Method and the Eikonal Equation

We first explore some aspects of distance computation on weighted domains.
In order to compute the distance between two points, we need to define a
measure of length. A definition of an arclength allows us to measure distance
by integrating the arclength along a curve connecting two points. The distance
between the points corresponds to the length of the shortest curve connecting
them.

Given a 2D weighted fiat domain, or in other words an isotropic nonhomo-
geneous domain, the distance may be defined via the arclength definition. For
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example, the arclength may be written as a function of the x and y Cartesian
coordinates of the planar domain

ds 2 = F(x, y) 2(dx 2 + dy 2),

where .F(x, y) : R 2 -* R+ is a function that defines a weight for each point in
the domain.

The distance map T(x, y) from a given point Po assigns a scalar value
to each point in the domain that corresponds to its distance from Po. It is
easy to show, see e.g. [2], that the gradient magnitude of the distance map is
proportional to the weight function at each point

IVT(x,y)l = 97(x, y),

where IVTI T- + TY. This equation is known as the Eikonal equation.
The 'viscosity' solution to the Eikonal equation coupled with the boundary
condition T(po) = 0 results in the desired distance map.

Our first goal is to solve the Eikonal equation. The key is to construct
a numerical approximation to the gradient magnitude that selects an appro-
priate 'weak solution'. Consider the following upwind approximation to the
gradient, given by

(max(D-xT, _D+xT, 0)2 + max(D•YT, -D+YT, 0)2)1/2 = Fij,

where for example D-xT 'j-T`,j is the standard backwards derivative
approximation, and Tij - T(iAx, jay). The use of upwind schemes in hyper-
bolic equations is well known, see for example, Godunov's paper from 1959
[7]. For Hamilton-Jacobi equations, see e.g. [17,3].

The solution T can be systematically constructed in an upwind fashion.
The upwind difference approximation of the above equation means that infor-
mation propagates one way from smaller values of T to larger values. The Fast
Marching Method exploits this order of events. A point gets updated only by
points with smaller values. This 'monotone property' allows us to keep a front
of candidate points that tracks the flow of information, ordered in a heap tree
structure in which the root is always the smallest value. An update of an
element in the heap tree is done in O(log M) operations. Thereby, the total
computational complexity is O(M log M). We refer to [22,19,20] for further
details on the Fast Marching Method.

One could recognize similarity to Dijkstra's method [5,18] that computes
minimum costs of paths on networks. Dijkstra algorithm would obviously
fail to consistently solve our geometric problems. Actually, any graph-search-
based algorithm induces the artificial metric imposed by the graph network,
and would be inconsistent with the continuous case, and thus fail to converge
as the graph resolution is refined.

The Fast Marching Method that works for orthogonal grids may be viewed
as a selection for the update of one of the four right angle triangles that share
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the same vertex. The extension to triangulated domains is motivated by this
observation, by the geometric interpretation of the update step, and by an
additional special treatment of obtuse angles. We refer to [11] for details on
the extension of the fast marching method to triangulated domains. It is also
based on a finite difference approximation to the Eikonal equation, this time
on the surface, monotone by construction, consistent, upwind, and converges
to the viscosity solution.

§3. Offsets and Voronoi Diagrams

We have an algorithm to compute distances on triangulated manifolds, and
hence construct offset curves. First, we solve the Eikonal equation with speed
F"- = 1 on the triangulated surface to compute the distance from a source
point or a region that defines an initial curve. We then find the equal geodesic
distance curves on the surface by interpolating the intersection with a constant
threshold using a 'marching triangle' procedure, again an O(M) operation.
The offsets on the triangulated surface, or the equi-geodesic-distance curves,
are shown in Figure 1. The black curve is the original curve, and the white
curves are the offsets.

Figure 2 presents Voronoi diagrams on several beads and a synthetic head.
We first compute the distance from each of the initial given source points
simultaneously using a single heap structure, and allow one vertex overlap
between distance maps form different sources. The complexity for the distance
computation is still O(M log M). Next, we 'march' along the triangles, and
for each triangle linearly interpolate the intersection curve between the two
different distance maps, again an O(M) operation.

The algorithm complexity remains the same as we add weights to the
surface. In Figures 3 and 4 a different cost is assigned to each vertex. The
cost, or weight function, is texture mapped onto the triangulated surface. The
weighted offsets, or weighted equal geodesic distance contours are shown in
Figure 3, while weighted geodesic Voronoi diagrams for several surfaces are
presented in Figure 4. In both examples, dark intensity mapped onto the
surface indicates a low cost, and the brighter the intensity the higher the cost.
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Fig. 1. Offsets on four beads and a Synthetic Head.
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Fig. 2. Voronoi diagrams of five points on four beads and a Synthetic Head.
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Fig. 3. Weighted offsets on four beads and a Synthetic Head.
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Fig. 4. Weighted Voronoi diagrams of five points on four beads and a Synthetic Head.
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